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Abstract This paper is motivated by the observation that the characteristic morphism of
an algebra relates to certain smoothness condition closely. We show that for an algebra
A of finite global dimension, if the characteristic morphism is injective, then A has finite
Hochschild cohomology dimension. In particular, if A is semi-simple, then the characteristic
morphism is injective if and only if A is homologically smooth. Moreover, the characteristic
morphism of a finite dimensional path algebra is injective. Recall that a path algebra is
always homologically smooth.
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1 Introduction

Letk be a field and A an associative algebra overk. There exists an algebra homomorphism,
called the characteristic morphism, from the Hochschild cohomolgy of A to its derived
center, the graded center of the derived category. In this paper, we mainly discuss the injec-
tivity of characteristic morphisms, and show how it relates to the homological smoothness
condition on algebras.

Hochschild cohomology was first introduced for algebras over a field [19], and then
extended to algebras over more general rings [10]. Hochschild cohomology groups, espe-
cially the ones of lower degrees, have meaningful interpretation, and for this reason,
Hochschild cohomology theory has found wide applications in different research fields,
such as representation theory, algebraic geometry, mathematical physics and so on.

The calculation of Hochschild cohomology groups is highly nontrivial in general. Some
typical well understood examples can be found in [11, 18, 34]. The simplest example next
to semi-simple algebras is given by a path algebra over a field, where the Hochschild coho-
mology groups of higher degrees (≥ 2) vanish, and the dimension of the first Hochschild
cohomology group is calculated by counting the number of arrows and paths in the quiver [18].

In many situations, for instance, in the study of the algebraic structures (Gerstenhaber
algebra, Batalin-Vilkovisky algebra, and so on) on the Hochschild cohomology groups, it
will be very helpful if an explicit basis is given. We mention that even for a path algebra,
it is not easy to find in literature such a basis, although every expert working in this area
will have one in mind. An interesting observation shows that for any finite acyclic quiver
Q, there exists a combinatoric construction for a basis of HH1(kQ), which is independent
of the base field k; see Proposition 4.6 below.

One may compare the construction with the one in [15], where a basis of the first
Hochschild cohomology group of a path algebra has been constructed in a different way in
case the quiver is finite planar acyclic and the ground field is of characteristic 0. Recall that
a planar quiver is a quiver that can be embedded in the plane.

We simply use Db(A) to denote the bounded derived category Db(A-mod) of the cat-
egory of finitely presented left A-modules. Db(A) is a triangulated category and one may
study its graded center Z∗(Db(A)). The idea of studying the graded center of a graded
category has been used by many authors from different perspectives, see for instance
[4, 7, 25, 26, 28].

The derived tensor product induces a map, called the characteristic morphism (a detailed
definition will be given in Section 2.3), from the Hochschild cohomology algebra HH∗(A)

of A to Z∗(Db(A)), which plays an important role in the support theory [2, 4, 5, 31], the
deformation theory for abelian and derived categories [27], the block cohomology of groups
[25], and in the study of Hochschild cohomology of singular spaces [8].

The characteristic morphism is a homomorphism of graded algebras, which is neither
injective nor surjective in general. Naively we may ask when a characteristic morphism will
be injective or surjective, and how to characterize the kernel and the image. Only partial
answers are known to us at moment.

We give a characterization of the image of an element in HH1(A) under the characteristic
morphism, which plays an important role in our study of the injectivity of the characteristic
morphism, especially its restriction to HH1(A).

We only focus on the injectivity problem. We point out that the injectivity condition
on a characteristic morphism relates to homological smoothness condition on the algebra
closely. Recall that an algebra A is said to be homologically smooth if A has finite projective
dimension as A-bimodules. The following result is obtained in Theorem 5.2.
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Theorem 1.1 Let A be a k-algebra of finite global dimension. If the characteristic mor-
phism of A is injective, then A has finite Hochschild cohomology dimension, i.e., HHn(A) =
0 for sufficiently large n.

Obviously a homologically smooth algebra has finite Hochschild cohomology dimen-
sion, while the finiteness condition on Hochschild cohomology dimension does not imply
the homological smoothness in general, and counterexamples can be found in [9]. But it
still remains unknown to us whether the injectivity of the characteristic morphism implies
the homological smoothness. Inspired by the above theorem, we may ask the following
question.

Question Let A be a k-algebra. Does it hold true that the characteristic morphism of A is
injective if and only if A is homologically smooth?

We have only obtained very first results on the question. We begin with the simplest
cases. First assume that A has global dimension 0, or equivalently, A is semi-simple. Then
the graded center of its derived category is trivial, and we have the following characteri-
zation, which is a part of Theorem 5.6 and gives an affirmative answer to the question in
semi-simple case.

Theorem 1.2 Let A be a semi-simple algebra over a field k. Then the characteristic
morphism of A is injective if and only if A is homologically smooth.

Next we move to hereditary algebras, that is, algebras of global dimension 1. We have an
affirmative answer to the question in a specific case, say for finite dimensional path algebras,
where there exists a nice basis of its Hochschild cohomology. Note that a path algebra
is always homologically smooth, and the above question asks whether the characteristic
morphism of a path algebra is injective. The answer is yes. The following result is obtained
in Theorem 5.7.

Theorem 1.3 Let k be a field and Q a finite acyclic quiver. Then the characteristic
morphism of the path algebra kQ is injective.

We mention that the case of an arbitary hereditary algebra is not known to us yet. The
reason is that we do not have a nice description of basis elements in the Hochschild coho-
mology groups, and our argument does not apply in this case. While if k is an algebraically
closed field, then we have a more general result: the characteristic morphism of a finite
dimensional hereditary k-algebra is injective. In fact, it was shown in [18] and [29], the
Hochschild cohomology is invariant under derived equivalence, see also [21] for a version
for differential graded algebras. Now the conclusion follows from the above theorem and
the fact that the graded center is a derived invariant.

The paper is organized as follows. In Section 2 we recall some basic notions and nota-
tions. Section 3 is devoted to the characterization of the image of a first Hochschild cocycle
under the characteristic morphism, and a criterion for the image being zero is also given
there.

In Section 4, we construct a basis of the first Hochschild cohomology group of the path
algebra of a finite acyclic quiver. We discuss the relation between the injectivity of the
characteristic morphism and the homological smoothness condition, and obtain the main
results of this paper (Theorem 1.1 through 1.3) in Section 5.
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2 Preliminaries

Let A be a k-algebra and M an A-bimodule. Throughout, all unadorned ⊗ will denote ⊗k.

2.1 Hochschild Cohomology

Let HC•(A,M) denote the following complex

0 −→ Homk(A0,M)
δ0−→ Homk(A,M)

δ1−→ Homk(A⊗2, M)
δ2−→ · · ·

δn−1−−→ Homk(A⊗n,M)
δn−→ Homk(A⊗n+1,M)

δn+1−−→ · · ·
of k-spaces, where A0 = k, and each differential δn (n ≥ 1) is defined by setting

(δnf )(a1, a2, · · · , an+1)

= a1f (a2, · · · , an+1) + ∑n
i=1(−1)if (a1, · · · , aiai+1, · · · , an+1)

+(−1)n+1f (a1, · · · , an)an+1

for any f ∈ Homk(A⊗n,M), a1, a2, · · · , an+1 ∈ A, and δ0(f )(a) = af (1)−f (1)a for any
f ∈ Homk(k,M), a ∈ A. The n-th Hochschild cohomology group HHn(A,M) of A with
coefficients in M is defined to be the n-th cohomology group of HC•(A,M). HHn(A,A)

is simply denoted by HHn(A), and called the n-th Hochschild cohomology group of A.

Remark 2.1 Set Ae = A ⊗ Aop to be the enveloping algebra of A. We use m to denote the
multiplication map of A. Consider the bar resolution of A

Bar•(A) : · · · → A⊗4 d2−→ A⊗3 d1−→ A⊗2 → 0,

where for each n ≥ 1,

dn =
∑

0≤i≤n

(−1)iId⊗i ⊗ m ⊗ Id⊗n−i .

Together with the multiplication map m : A⊗2 → A, Bar•(A) gives a projective resolution
of A as A-bimodules; and for any A-bimodule M , Ext•Ae(A,M) is computed as cohomology
groups of the complex

· · · → HomAe(A⊗4,M) → HomAe(A⊗3,M) → HomAe(A⊗2,M) → 0.

By applying the natural isomorphism HomAe(A⊗n+2,M) ∼= Homk(A⊗n,M), the above
complex is isomorphic to HC•(A,M), and consequently we have

HHn(A,M) = ExtnAe (A,M), n ≥ 0.

Remark 2.2 (1) The Hochschild cohomology is defined for an algebra A over an arbitrary
commutative base ring k, and if A is projective as a k-module, then HHn(A,M) =
ExtnAe (A,M) for any A-bimodule M and any n ≥ 0, see Corollary 9.1.5 in [33] for
instance.

(2) It was shown in [13] that HH∗(A) = ⊕
n∈Z HHn(A) is a positively graded commuta-

tive algebra under the Yoneda product; moreover, HH∗(A) possesses a Gerstenhaber
algebra structure.

(3) The lower dimensional Hochschild cohomology groups have the following well-
known interpretations:

(a) HH0(A) ∼= Z(A), where Z(A) denotes the center of A;
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(b) HH1(A) ∼= Der(A)/InDer(A), where Der(A) is the k-space of derivations of A, and
InDer(A) the subspace consisting of inner ones.

Recall that a derivation of A is a linear map δ ∈ Homk(A,A) with δ(ab) = δ(a)b+
aδ(b) for all a, b ∈ A. For each a ∈ A, the map ∂a = [a, −], x 	→ ax − xa defines a
derivation, and we call it the inner derivation induced by a. Clearly, inner derivations
form a k-subspace. If a derivation is not inner, then we call it an outer derivation.

(c) HH2(A) controls the infinitesimal deformations of A, and HH3(A) describes the
obstruction to extending an infinitesimal deformation to a formal one. We refer to [14]
for an explanation.

2.2 Graded Center of a Triangulated Category

By a graded k-category we mean a pair (C, �), where C is a k-category and � an auto-
equivalence of C. The graded center of a graded k-category (C, �), denoted by Z∗(C, �),
is defined to be the Z-graded k-space Z∗(C, �) = ⊕

n∈Z Zn(C, �), where for each n,

Zn(C, �) = {η : IdC → �n | �η = (−1)nη�}.
For any η ∈ Zn(C, �) and ζ ∈ Zm(C, �), a routine check shows that �mη ◦ ζ ∈
Zm+n(C, �). Thus the assignment ηζ = �mη ◦ ζ defines a multiplication on Z∗(C, �),
which is easily shown to be associative and graded commutative, where graded commutative
means that ηζ = (−1)mnζη for any η ∈ Zn(C, �) and ζ ∈ Zm(C, �).

Remark 2.3 (1) The classical center Z(C) of a category C is formed by all natural transfor-
mations from the identity functor to itself. Clearly, Z0(C, �) ⊆ Z(C), and the equality
holds if � = IdC .

(2) Note that Z∗(C, �) is not necessarily a set in general; it will be if C is small.

A triangulated category is a graded category (C, �) together with a class of tri-
angles, called distinguished triangles, satisfying certain axioms. Recall that a tringle

(X, Y, Z, f, g, h), usually written as X
f−→ Y

g−→ Z
h−→ �X, consists of three objects X, Y

and Z together with morphisms f : X → Y , g : Y → Z and h : Z → �X. In this case,
the graded center Z∗(C, �) is called the graded center of the triangulated category C, and
simply denoted by Z∗(C). We refer to [17, 32] for details on triangulated categories.

The condition �η = (−1)nη� in the definition seems to be meaningful in this case. In

fact, for any η ∈ Zn(C) and any distinguished triangle X
f−→ Y

g−→ Z
h−→ �X in C, the

equality �η = (−1)nη� ensures the existence of a morphism of triangles

2.3 The Characteristic Morphism

Let A be an algebra. We denote by A-Mod the category of left A-modules, and A-mod
the full subcategory of finitely presented ones. We simply denote D(A-Mod) by D(A)

and Db(A-mod) by Db(A). Note that A-mod is a small exact category; and it will be an
abelian category if A is left coherent. Moreover, by Lemma 7.7 in [22], the embedding
A-mod ⊆ A-Mod induces a fully faithful exact functor Db(A) → Db(A-Mod).
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It is well known that Db(A) is a triangulated category with the shift functor [1], and the
category A-mod is a full subcategory of Db(A), where each A-module is viewed as a stalk
complex concentrated in degree 0. Moreover, for any pair of A-modules M and N , we have
natural isomorphisms

ExtnA(M,N) ∼= HomD(A)(M,N [n]), n ≥ 0.

For each n ≥ 0, applying the natural isomorphisms HHn(A) = ExtnAe (A, A) and
ExtnAe (A,A) ∼= HomD(Ae)(A,A[n]), any η ∈ HHn(A) can be viewed as a mor-
phism in HomD(Ae)(A,A[n]), which is again denoted by η. Clearly η induces a natural

transformation χ(η) : A
L⊗A − −→ A[n] L⊗A −, where

A
L⊗A −, A[n] L⊗A −: D(A) → D(A)

are left derived functors of A⊗A − and A[n]⊗A − respectively. Using the fact A is flat as a

right A-module, we obtain natural isomorphisms A
L⊗A − = IdD(A), and A[n] L⊗A − = [n].

It is routine to check that χ(η) ∈ Zn(D(A)). Thus there is a map from HH∗(A) to
Z∗(Db(A)). Composed with the restriction map Z∗(D(A)) → Z∗(Db(A)), we obtain a
well-defined map χ : HH∗(A) → Z∗(Db(A)). Here we use the fact that Db(A) is a full
subcategory of D(A).

Remark 2.4 It is shown in [28, 4.5] that χ is a homomorphism of graded commutative k-
algebras. In fact, in geometric contexts such a map can be viewed as an algebraic version of
the Fourier-Mukai transformation, see [7, 3.3]. χ is called the characteristic morphism of A.

We mention that the above construction also defines homomorphisms HH∗(A) →
Z∗(D(A)) and HH∗(A) → Z∗(Db(A-Mod)), and χ factors through both of them.

Remark 2.5 Obviously, for an arbitrary abelian category C, any endomorphism of IdC lifts
to an endomorphism of IdD(C) which commutes with the shift functor [1], where D(C)

denotes the derived category of C, bounded or unbounded. In other words, there is a natural
embedding of graded rings Z(C) ↪→ Z0(D(C)).

We apply this fact to module categories. A classical result says that there are isomor-
phisms Z(A) ∼= Z(A-mod) ∼= Z(A-Mod) of commutative k-algebras. Thus we obtain
embeddings Z(A) ↪→ Z0(D(A)) and Z(A) ↪→ Z0(Db(A)). We may identify HH0(A) with
Z(A), and the above inclusions are compatible with

χ0 : HH0(A) → Z0(D(A)) → Z0(Db(A)),

the degree 0 component of the characteristic morphism.

3 The Natural Transformation Induced by a Derivation

3.1 Derivations and Bimodule Extensions

We first introduce some useful notations. Let A be an algebra and δ ∈ Der(A) a derivation
of A. For any left A-module M , M ⊕δ M is defined to be the A-module with the underlying
k-space M⊕M , and the module action given by a(m, n) = (am+δ(a)n, an) for any a ∈ A

and m, n ∈ M . In particular, A ⊕δ A is an A-bimodule under the usual right A-module
action.
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Remark 3.1 (1) If δ, δ′ are derivations of A with δ − δ′ ∈ InDer(A), then there exists an
isomorphism of A-bimodules A⊕δ A ∼= A⊕δ′ A. In fact, assume δ−δ′ = ∂a for some
a ∈ A, then the map F : A ⊕δ A → A ⊕δ′ A, (x, y) 	→ (x + ay, y) gives the desired
isomorphism. In particular, if δ is an inner derivation, then A⊕δ A ∼= A⊕A, the usual
direct sum.

(2) It is easy to check that M ⊕δ M ∼= (A ⊕δ A) ⊗A M .
(3) We have the following general construction. Let δ be a derivation of A and f : N → M

a homomorphism of left A-modules. Then we may endow the k-space M ⊕ N a left
A-module structure with the module action given by a(m, n) = (am + δ(a)f (n), an)

for any m ∈ M , n ∈ N , and a ∈ A. Then M ⊕δ M is the special case by setting
M = N and f = IdM .

For any A-modules M,N , we denote by Yext1(M,N) the set of isoclasses of short exact
sequences of A-modules with the first term N and the last term M . There exists a natural
isomorphism of bi-functors Yext1A(−, −) ∼= Ext1A(−,−). The following lemma explains
why we introduce the above construction.

Lemma 3.2 Under the natural isomorphisms HH1(A) ∼= Ext1Ae(A,A) ∼= Yext1Ae(A,A), a
derivation δ of A maps to the isoclass of the short exact sequence

0 → A

(
1
0

)

−−→ A ⊕δ A
(0,1)−−→ A → 0.

Proof The assertion follows directly from the commutative diagram of homomorphisms of
A-bimodules

where f, g are given by f (a ⊗ b ⊗ c) = aδ(b)c and g(a ⊗ b) = (δ(a)b, ab).

3.2 Derivations Viewed as Morphisms in Derived Category

As we have mentioned above, there is a natural isomorphism Ext1A(M,N) ∼=
HomD(A)(M,N [1]) for any A-modules M, N . Note that each A-module M can be viewed
as a stalk complex concentrated in degree 0, which by abuse of notation also denoted by M .

Let ξ be a short exact sequence 0 → N
f−→ E

g−→ M → 0. We denote by [ξ ] the isoclass
of short exact sequences which contains ξ . Denote by X•

ξ the complex

where X0
ξ = E, X1

ξ = N and Xi
ξ = 0 for i �= 0, 1. Then we have a quasi-isomorphism

s : X•
ξ =⇒ M , say
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Here we use the usual notation “ =⇒ ” to denote a quasi-isomorphism of complexes.
Moreover, we have a morphism of complexes u : X•

ξ → N [1] given by

where the bottom complex is N [1], a stalk complex concentrated in degree 1. Now M
s⇐=

X•
ξ

u−→ N [1] (usually called a roof) gives a morphism u/s : M → N [1] in D(A). Note

that u/s can be viewed as u ◦ s−1.
We mention that the map u ◦ s−1 is independent of the choice of representatives in [ξ ].

In fact, let ξ ′ : 0 → N
f ′
−→ E′ g′

−→ M → 0 be a short exact sequence isomorphic to ξ . Then
we have a commutative diagram

which induces an isomorphism of complex α̃ : X•
ξ → X•

ξ ′ given by

We may define s′ : X•
ξ ′ → M and u′ : X•

ξ ′ → N [1] similarly. Clearly we have s = s′ ◦ α̃

and u = u′ ◦ α̃, and hence u/s = u/s′.
We have shown that the above assignment defines a map from Yext1A(M,N) to

HomD(A)(M,N [1]), which coincides with the composite of the isomorphisms

Yext1A(M,N) ∼= Ext1A(M,N) ∼= HomD(A)(M,N [1]).

In particular, for a derivation δ ∈ Der(A), the image of δ in HomD(Ae)(A,A[1]) is shown
as follows.
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3.3 The Image of a Derivation

We are now ready to study the image of a derivation under the characteristic morphism.
Let δ be a derivation of A, and δ̄ its image in HH1(A). By definition, when restricted to an
A-module M , the map χ(δ̄)M : M → M[1] is given as follows.

Note that we use the fact (A ⊕δ A) ⊗A M ∼= M ⊕δ M here. Then we have the following
useful lemma.

Lemma 3.3 Let δ be a derivation of A. Then for any A-module M , under the isomorphisms
HomD(A)(M,M[1]) ∼= Ext1A(M,M) ∼= Yext1A(M,M), the map χ(δ̄)M : M → M[1] maps
to the isoclass of the short exact sequence

0 → M

(
1
0

)

−−→ M ⊕δ M
(0,1)−−→ M → 0.

We draw the following easy consequence.

Proposition 3.4 Let δ be a derivation of A. If χ(δ̄) = 0, then the short exact sequence

0 → M

(
1
0

)

−−→ M ⊕δ M
(0,1)−−→ M → 0 splits for any A-module M . Moreover, if A is

hereditary, then the converse statement also holds true.

Proof Note that for an A-module M , 0 → M

(
1
0

)

−−→ M ⊕δ M
(0,1)−−→ M → 0 splits if and

only if χ(δ̄)M = 0. Thus the first assertion is obvious.
A classical result says that for a hereditary algebra A, any object in D(A) can be written

as a direct sum of stalk complexes. If χ(δ̄)M = 0 for any stalk complex M concentrated
in degree zero, then χ(δ̄)M = 0 holds for all stalk complexes and hence for all complexes.
The last conclusion follows.

We end this section with two technical lemmas for later use.

Lemma 3.5 Let δ be a derivation of A and M an A-module. Then the sequence 0 →
M

(
1
0

)

−−→ M⊕δM
(0,1)−−→ M → 0 splits if and only if there exists a k-linear map f : M → M ,

such that f (am) = af (m) + δ(a)m for any a ∈ A and m ∈ M .
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The proof is easy. In fact, 0 → M

(
1
0

)

−−→ M ⊕δ M
(0,1)−−→ M → 0 splits if and only if there

exists an A-module homomorphism
(

f
g

)
: M → M ⊕δ M such that (0, 1)

(
f
g

)
= IdM .

The last equality implies that g = 1; and
(

f
1

)
is an A-module homomorphism if and only

if f (am) = af (m) + δ(a)m.

Lemma 3.6 Let δ be a derivation of A. Suppose that the sequence

0 → M

(
1
0

)

−−→ M ⊕δ M
(0,1)−−→ M → 0

splits for any A-module M . Then δ(a) ∈ 〈a〉 for any a ∈ A, where 〈a〉 = AaA is the ideal
generated by a.

Proof We consider the module M = A/〈a〉. By Lemma 3.5, there exists some f : M → M ,
such that for any m ∈ M , f (am) = af (m) + δ(a)m. Thus 0 = f (ā) = f (a1̄) = af (1̄) +
δ(a)1̄ = δ(a), which is equivalent to δ(a) ∈ 〈a〉.

4 Derivations of a Path Algebra

In this section we will give a basis of the Hochschild cohomology group of a finite dimen-
sional path algebra, which is handy in our later use. We mention that such a basis should be
known to people working in this area, although it is difficult to find it in literature.

4.1 Quivers and Path Algebras

A quiver is, roughly speaking, an oriented graph. More precisely, a quiver Q =
(Q0,Q1, s, t) is given by a quadruple, where Q0 is the set of vertices, Q1 the set of edges
which are usually called arrows, and s, t : Q1 → Q0 are two maps assigning to each arrow
α its starting vertex and terminating vertex respectively. If both Q0 and Q1 are finite sets,
then we call Q a finite quiver. All quivers considered here are assumed to be finite.

A non-trivial path p in Q is a sequence of arrows αn · · ·α2α1 with t (αi) = s(αi+1) for
1 ≤ i ≤ n − 1; s(α1) and t (αn) are called the starting vertex and terminating vertex of p,
and denoted by s(p) and t (p) respectively; and n is called the length of p, and denoted by
l(p). For each vertex v, we denote by ev the trivial path which starts and terminates at v and
which has length 0. The set of all paths in Q is also denoted by Q.

SetkQ be thek-space with a basis consisting of all paths in Q. Then the concatenation of
paths defines an associative multiplication on kQ. We call such an algebra the path algebra
of Q and denote it by kQ. kQ has an identity element if and only if Q0 is a finite set, and
in this case, 1kQ = ∑

v∈Q0
ev . For unexplained notions on quivers and path algebras, we

refer to [1] and [30].

Remark 4.1 (1) An oriented cycle in Q means a nontrivial path with the same starting and
terminating vertex. A quiver Q is said to be acyclic if Q has no oriented cycles. A path
algebra kQ is finite dimensional if and only if Q is a finite acyclic quiver.

(2) The path algebra kQ is a hereditary algebra. If k is an algebraically closed field, then
any finite dimensional k-algebra is Morita equivalent to a path algebra of some finite
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quiver modulo an admissible ideal, in particular, any finite dimensional hereditary
k-algebra is Morita equivalent to a path algebra of some finite acyclic quiver.

(3) It was also shown in [18] that HHn(kQ) = 0 for any finite quiver Q and any n ≥ 2.
Moreover, if Q is connected and is not an oriented cycle, then HH0(kQ) = k.

4.2 Derivations of a Path Algebra

Let Q be a finite quiver and A = kQ the path algebra. We say that two paths p, p′ in Q are
parallel, denoted by p ‖ p′, if s(p) = s(p′) and t (p) = t (p′). For any vertices s, t ∈ Q0,
Qt,s denotes the set of all paths starting at s and terminating at t . Clearly, 1 = ∑

v∈Q0
ev

is an orthogonal idempotents decomposition of the identity, that is, eset = δs,t es for all
s, t ∈ Q0, here we use the Kronecker delta notation. The idempotent decomposition gives a
double Pierce decomposition A = ⊕

s,t∈Q0
etAes . Note that each etAes has a k-basis Qt,s .

We have the following well-known results on derivations of a path algebra. For the con-
venience of the readers we also include a proof. We mention that the result holds true for
any associative algebra and any orthogonal idempotent decomposition of the identity.

Lemma 4.2 Let d be a derivation of A. Then there exists a derivation d̃ such that d̃ − d ∈
InDer(A) and d̃(ev) = 0 for any vertex v ∈ Q0.

Proof It is equivalent to show that there exists some inner derivation d ′ such that d ′(ev) =
d(ev) holds for all v ∈ Q0.

For any v ∈ Q0, we may write d(ev) = ∑
s,t∈Q0

Xv
t,s , where Xv

t,s ∈ kQt,s are uniquely
determined by d .

Since d is a derivation and ev an idempotent, we have

d(ev) = d(e2
v) = evd(ev) + d(ev)ev,

and hence
∑

s,t∈Q0

Xv
t,s =

∑

s∈Q0

Xv
v,s +

∑

t∈Q0

Xv
t,v =

∑

s∈Q0,s �=v

Xv
v,s +

∑

t∈Q0,t �=v

Xv
t,v + 2Xv

v,v.

By comparing the left side and the right side of the above equality, we obtain that Xv
v,v = 0,

and Xv
s,t = 0 if none of s and t equals to v.

Moreover, by applying d(1) = 0, we know that Xs
t,s = −Xt

t,s holds for any s �= t ∈ Q0.
Set a = ∑

s,t∈Q0
Xs

t,s , and let ∂a be the induced inner derivation. Then for any v ∈ Q0, we
have

∂a(ev) = ∑

s,t∈Q0

Xs
t,sev − ∑

s,t∈Q0

evX
s
t,s

= ∑

t∈Q0

Xv
t,vev − ∑

s∈Q0

evX
s
v,s

= ∑

t∈Q0

Xv
t,vev + ∑

s∈Q0

evX
v
v,s = d(ev),

which completes the proof.

Lemma 4.3 Let d be a derivation of A with d(ev) = 0 for any v ∈ Q0. Then for any
nontrivial path p, d(p) is a linear combination of paths parallel to p.
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Proof Set s = s(p) and t = t (p). Then

d(p) = d(etpes) = d(et )pes + etd(p)es + etpd(es) = etd(p)es,

and the conclusion follows.

4.3 A Basis of HH1(kQ) for a Finite Acyclic Quiver Q

As an algebra the path algebra A = kQ is generated by kQ0 and kQ1, therefore by the
Leibniz rule any derivation of A is determined by its values on all trivial paths and arrows.
To give an explicit basis of HH1(kQ), we need the following notation.

Let α ∈ Q0 be an arrow in Q1 and p ‖ α a (possibly trivial) path in Q parallel to α. Then
there exists a unique derivation of A, denoted by ∂

p
α , such that ∂

p
α (ev) = 0 for any v ∈ Q0,

∂
p
α (α) = p, and ∂

p
α (x) = 0 for any x ∈ Q1 with x �= α.

Remark 4.4 By Lemma 4.2, the set {∂p
α | α ∈ Q0, p ∈ Q, p ‖ α} together with InDer(A)

linearly span Der(A). In other words, HH1(A) = Der(A)/InDer(A) is linearly spanned by
the image of all ∂

p
α .

As usual, we also denote the image of a derivation d of A in HH1(A) by d̄ . We mention
that ∂

p
α ’s are linearly independent in Der(A), while ∂̄

p
α ’s are not in HH1(A). To obtain a

basis of HH1(A), it suffices to remove some redundant derivations.

Recall that a spanning forest � of a quiver Q is a subquiver of Q whose underlying graph
contains no cycles and which is maximal with this property.

Remark 4.5 (1) Spanning forests are not unique in general.
(2) Assume Q has r connected components. Then the maximality requirement implies that

|�1| = |Q0| − r , and the number of connected components of � is also r . Moreover,
two vertices v1 and v2 belong to the same connected component of � if and only if
they belong to the same connected component of Q. In particular, if Q is connected,
then � is connected and has exactly |Q0| − 1 edges.

Proposition 4.6 Let Q be a finite acyclic quiver, A = kQ the path algebra, and � a
spanning forest of Q. Then

{
∂̄p
α | α ∈ Q1, p ∈ Q,p ‖ α} \ {∂̄α

α |α ∈ �1
}

is a basis of HH1(A) = Der(A)/InDer(A).

Proof Set X = {∂p
α | α ∈ Q1, p ∈ Q, p ‖ α} and X� = X \ {∂α

α |α ∈ �1}, and denote
by X̄, X̄� their images in HH1(A). To show that X̄� gives a basis, one needs to show that
derivations in X̄� are linearly independent in HH1(A), and X̄� linearly generates HH1(A).

Firstly, suppose that aα, bβ,p ∈ k are such that

∑

α∈Q1\�1

aα∂α
α +

∑

β∈Q1,p∈Q

p‖β,p �=β

bβ,p∂
p
β ∈ InDer(A),
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that is, ∑

α∈Q1\�1

aα∂α
α +

∑

β∈Q1,p∈Q

p‖β,p �=β

bβ,p∂
p
β =

∑

v∈Q0

cv∂ev +
∑

p∈Q≥1

dp∂p (4.1)

for some cv, dp ∈ k, here Q≥1 denotes the set of all non-trivial paths.
Obviously by evaluating the Eq. 4.1 at any ev(v ∈ Q0), we obtain that

∑

p∈Q≥1,s(p)=v

dpp −
∑

p∈Q≥1,t (p)=v

dpp = 0.

By assumption Q is acyclic, which implies that for any nontrivial path p, s(p) = v and
t (p) = v never occur simultaneously, then the above equality forces dp = 0 whenever
s(p) = v or t (p) = v, and hence all dp’s vanish.

Moreover, for any β ∈ Q1, by evaluating the Eq. 4.1 at β we have bβ,p = 0 for all
p �= β, p ‖ β. Thus (4.1) reads as

∑

α∈Q1\�1

aα∂α
α =

∑

v∈Q0

cv∂ev .

Now for any arrow γ ∈ �1 ⊆ Q1, by evaluating the above equation at γ , we have

0 =
∑

α∈Q1\�1

aα∂α
α (γ ) =

∑

v∈Q0

cv∂ev (γ ) = (ct (γ ) − cs(γ ))γ,

and hence ct(γ ) = cs(γ ). It forces that all cv’s with v in the same connected component of
� are equal. Since � is a spanning forest of Q, we deduce that all cv’s with v in the same
connected component of Q are equal. For any connected component Q′ of Q, it is easy to
check that

∑
v∈Q′

0
∂ev = 0, and it follows that

∑
α∈Q1\�1

aα∂α
α = ∑

v∈Q0
cv∂ev = 0. Thus

given any γ ∈ Q1 \ �1, we have aγ γ = ∑
α∈Q1\�1

aα∂α
α (γ ) = 0, and hence aγ = 0.

We have shown that all the coefficients aα’s and bβ,p’s must be 0, and the linear
independence of X̄� follows.

Next we show that X� generates HH1(A). Since X̄ spans HH1(A), it suffices to show
that any ∂α

α with α ∈ �1 is a linear combination of elements in X� and inner derivations.
For any α ∈ �1, consider the subquiver �α = � \ α. Now we may define a {0, 1}-valued

function fα on Q0 as follows,

fα(v) =
{

1, if v and t (α) belong to the same connected component of �α;
0, otherwise.

Then it is straightforward to verify that

∂α
α =

∑

e∈Q0

fα(v)∂ev −
∑

β∈Q1\�1

(fα(t (β)) − fα(s(β)))∂
β
β ,

which completes the proof.

We draw the following easy consequence.

Corollary 4.7 ([16]) Let Q be a finite connected acyclic quiver. For any α ∈ Q1, denote
by v(α) the number of paths parallel to α. Then

dimk HH1(A) =
∑

α∈Q1

v(α) − (|Q0| − 1).
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5 Characteristic Morphism of a Path Algebra

The characteristic morphism of an algebra is neither injective nor surjective in general. In
this section, we will discuss the question when a characteristic morphism is injective or
surjective, and show how the injectivity of the characteristic morphism relates to certain
smoothness condition closely.

5.1 We Begin with an Interesting Example in which the Characteristic
Morphism is Neither Injective Nor Surjective

Example 5.1 Let k be a field of characteristic 0, and A = k[x]/〈x2〉 the ring of dual
numbers over k. It is known that HH1(A) ∼= k. By some tedious calculation one shows that
the characteristic morphism χ maps HH1(A) to 0. Thus χ is not injective in this case.

Moreover, Z0(Db(A)) is of infinite dimension, thus the restriction of χ to HH0(A) (= A)

is not surjective, see [24] or [23, Propostion 5.2].

It has been implicitly shown in [24, Section 2] that for a triangulated category satisfying
certain Krull-Schmidt property, for instance the bounded derived category of a finite dimen-
sional algebra of infinite representation type, the graded center could be of uncountable
dimension, see also [23, Section 4] for tame hereditary algebra case. Since each compo-
nent of the Hochschild cohomology group of a finite dimensional algebra is always finite
dimensional, the characteristic morphism is not surjective in this case.

We mainly discuss finite dimensional algebras here, and we only consider the injectiv-
ity of characteristic morphisms. We first show that for an algebra A (not necessarily of
finite dimension) with finite global dimension the injectivity of the characteristic morphism
implies the finiteness of the Hochschild cohomology dimension of A, which is by definition
the least integer n such that HHn(A) �= 0, see [16, Definition 2].

Theorem 5.2 Let A be a k-algebra of finite global dimension. If the characteristic
morphism of A is injective, then HHn(A) = 0 for sufficiently large n.

Recall that an algebra A is said to be homologically smooth if A has a bounded res-
olution of projective A-bimodules, or equivalently, the projective dimension of A as an
A-bimodule is finite. A homologically smooth algebra always has finite Hochschild coho-
mology dimension. The converse is not true in general. In fact, there exists an algebra A of
finite Hochschild cohomology dimension but of infinite global dimension, see for instance
[9]. Combined with the fact proj.dimAeA ≥ gl.dimA, we know that A is not homologi-
cally smooth. But it still remains unknown to us whether the injectivity of the characteristic
morphism implies the homological smoothness.

The theorem is an easy consequence of the following proposition. Note that the
characteristic morphism factors through Zm(Db(A-Mod)).

Proposition 5.3 Assume A has global dimension d . Then Zm(Db(A-Mod)) = 0 unless
0 ≤ m ≤ d .

To simplify the proof, we need some notation. Let X• be a complex of A-modules and
n ∈ Z an integer. We denote by ιnX

• the truncated complex with (ιnX
•)m = 0 for m ≥
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n + 1, and (ιnX
•)m = Xm for m ≤ n, and dm

ιnX• = dm
X• for m ≤ n. Thus there exists a

natural map iX
•

n : ιnX
• → X•, given by setting (iX

•
n )m = IdXm for m ≤ n, pictorially

Then we have the following obvious lemma.

Lemma 5.4 Let f • : X• → Y • be a homomorphism of complexes of A-modules. Assume
that f ◦ iX

•
n is homotopic to 0. Then f • is homotopic to some g• such that gi = 0 for all

i ≤ n.

In fact, by assumption, there exists a family of morphisms {hi : Xi → Y i+1}i≤n, such
that f i = di+1

Y hi + hi−1di
X for all i ≤ n. We set gi = f i for all i > n + 1, gn+1 =

f n+1 − hndn+1
X , and gi = 0 for all i ≤ n. Then f • is homotopic to g•.

Now we can give the proof of the above proposition.

Proof of Proposition 5.3 Since A has finite global dimension, any X• ∈ Db(A-Mod) has a
projective resolution that is contained in Kb(ProjA), where ProjA is the additive category
of projective A-modules. In other words, Kb(ProjA) is dense in Db(A-Mod). Moreover, for
any P • ∈ Kb(ProjA),

HomDb(A-Mod)(P
•, X•) = HomKb(A-Mod)(P

•, X•).

Thus given any ζ ∈ Zm(Db(A-Mod)), to show ζ = 0 it suffices to show that ζP • = 0
for any P • ∈ Kb(ProjA).

We use induction on the width of P •. Let s(P •) and l(P •) be the smallest and largest
integer n such that P n �= 0 respectively. We say that P • is supported in [s(P •), l(P •)]; and
w(P •) = l(P •) − s(P •) + 1 is called the width of P •.

Since ζ is graded commutative with the shift functor [1], we need only to show that
ζP • = 0 for all n ≥ 0 and those complexes in Kb(ProjA) which are supported in [0, n], that
is complexes of the form

· · · → 0 → P n → P n−1 → · · · → P 0 → 0 → · · · .

Clearly w(P •) = n + 1 in this case.
We deal with the cases m < 0 and m > d separately.

Case 1: m < 0.
Obviously ζP • = 0 if w(n)+m ≤ 1. We assume that ζP • = 0 for all complexes

P • with w(P •) ≤ n. Now consider the following complex.

· · · → 0 → P n → P n−1 → · · · → P 0 → 0 → · · · .

Since w(ιn−1P •) ≤ n, ζιn−1P • = 0 by assumption. Since ζ is a natural trans-
formation, the composition map ζP • ◦ iP

•
n−1 = 0 in Db(A), thus ζP • ◦ iP

•
n−1 is

homotopic to zero. By Lemma 5.4, ζP • is homotopic to some g• with gi = 0 for
all i ≤ n − 1. Now gn is automatically 0, and it follows that g• = 0, i.e., ζP • is 0
in Db(A-Mod).
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Case 2: m > d.
Clearly ζP • = 0 for all complexes P • ∈ Kb(ProjA) with w(P •) ≤ m. We use

induction on w(P •). Assume that ζP • = 0 for all complexes P • with w(P •) ≤
m + n, where n ≥ 0. Now we consider a complex

P • : · · · → 0 → P m+n → P m+n−1 → · · · → P 0 → 0 → · · ·
with w(P •) = m + n + 1. We will show that ζP • = 0.

Write ζP • = g• for short. Now consider the following map π :

where pn is the natural quotient map.
Since A has global dimension d , P n

Imdn+1 has a projective resolution of the form

· · · → 0 → Qn+d → · · · → Qn+1 → Qn → P n

Imdn+1
→ 0.

Then we have a quasi-isomorphism

Notice that the top complex has width strictly less than n + m + 1. By induction hypoth-
esis, π [m] ◦ g• is zero in Db(A-Mod) and hence homotopic to zero. Thus there exists a
homotopy h• : π [m] ◦ g• → 0, pictorially

Let α•, β• : X• → Y • be morphism of complexes. A homotopy h• : α• → β• is by
definition a family of morphisms {hi : Xi → Y i+1}i∈Z such that

di+1
Y • hi + hi−1di

X• = αi − βi

for any i ∈ Z.
Since pn is surjective, hm+n−1 lifts to some h̃m+n−1 : P m+n−1 → P m+1. It is direct to

show that pn(gm+n − h̃m+n−1dm+n
P • ) = 0. Hence there exists some h̃m+n : P m+n → P n+1,

such that gm+n = dn+1h̃m+n + h̃m+n−1dm+n
P • .
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Set h̃i = hi for i �= m + n − 1,m + n. Then the family {h̃i}i∈Z gives a homotopy from
g• to 0, which means that ζP • = 0 in Db(A-Mod). The proof is competed.

5.2 The Characteristic Morphism of a Semi-Simple Algebra

Example 5.5 We first recall an example from [6]. Let k be a field of characteristic p.
Assume that k is not perfect. Then there exists some a ∈ k, which has no p-th roots in k.
Consider the field extension A = k[a1/p]. Then HH∗(A) is isomorphic to k[x] as an alge-
bra. Clearly the graded center of Db(A) is isomorphic to k, thus the characteristic morphism
is not injective in this case. In fact, we have a more general result.

Theorem 5.6 Let A be a finite dimensional semi-simple algebra over k. Then the following
are equivalent:

(1) A is a projective A-bimodule;
(2) A is separable over k;
(3) A is homologically smooth;
(4) the characteristic morphism χ of A is injective.

Proof Note that the equivalence (1)⇐⇒(2) is well known for separable algebras and
(1)=⇒(3) is obvious by definition.

By assumption A is semi-simple and the graded center of the derived category is concen-
trated in degree 0, then the characteristic morphism is injective if and only if HH≥1(A) = 0.
Thus (1)=⇒(4) is clear.

Next we show that (4)=⇒(2). Assume that A is nonseparable. Combining Theorem 1.8.1
and Theorem 1.8.3 in [20], one shows that HH1(A) �= 0. Since the graded center Z∗(D(A))

is concentrated in degree 0, we obtain that Ker(χ) ⊇ HH1(A) �= 0. Therefore, if the
characteristic morphism of A is injective, then A must be separable.

We are only left to show the implication (3)=⇒(2). Notice that the separability condi-
tion and the homologically smooth condition are both preserved under Morita equivalence,
which says that it suffices to prove (3)=⇒(2) for a finite dimensional division algebra D.

We need the following fact on separable algebras. Let K be the center of D. Then K is a
finite field extension of k such that D is separable over K , and D is separable over k if and
only if K is a separable extension, see for instance [12, Theorem 6.1.2].

Clearly D is a K-linear space, and hence a free K-module. Moreover, D is a direct sum
of copies of K as K ⊗k K-modules, and D ⊗k D is a free K ⊗k K-module. Now assume
that D is homologically smooth over k. Then D has a bounded resolution of projective
D ⊗kD-modules, which is also a projective resolution of D as K ⊗kK-modules. Thus the
projective dimension of D as a K-bimodule is finite, and so is K . In particular, HHn(K,K)

vanish for sufficiently large n, therefore K is a separable extension of k by [3, Corollary],
see also [16]. It follows that D is separable over k, and the proof is completed.

5.3 The Characteristic Morphism of a Path Algebra

Now we turn to path algebras, a special class of hereditary algebras. Note that a semi-simple
algebra is an algebra of global dimension 0, and hereditary algebras, those algebras of global
dimension 1, are the simplest algebras next to semi-simple ones in some sense. We mention
that a path algebra is always homologically smooth. The main result is stated as follows.
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Theorem 5.7 Let A = kQ be the path algebra of a finite acyclic quiver. Then the
characteristic morphism of A is injective.

Proof By [23, Lemma 3.1] and Remark 4.1(3), it suffices to show that χ is injective when
restricted to HH1(A). That is, for any outer derivation δ ∈ Der(A) \ InDer(A), we need to
show that χ(δ̄) �= 0. There are two cases.

Case 1. δ(a) �∈ 〈a〉 for some a ∈ A.
This case is easy. In fact, by Lemma 3.6, there exists some A-module M such

that the sequence 0 → M

(
1
0

)

−−→ M ⊕δ M
(0,1)−−→ M → 0 is non-split. Then by

Proposition 3.4, we have χ(δ̄) �= 0.
Case 2. δ(a) ∈ 〈a〉 for all a ∈ A.

Let � be a spanning forest of Q. By Proposition 4.6, there exists some δ′, which is a
linear combination of elements in X� with δ̄ = δ̄′, where X� denotes the set {∂̄p

α | α ∈
Q1, p ∈ Q, p ‖ α} \ {∂̄α

α |α ∈ �1}. Clearly δ′(a) ∈ 〈a〉 for all a ∈ A.
For any α ∈ Q1, set Vα to be the subspace spanned by {p ∈ Q | p ‖ α}. Since Q is

acyclic, obviously 〈α〉 ∩ Vα = kα, thus δ′(α) = λαα for some λα ∈ k. By construction of
X� , we know that δ′(α) = 0 for any α ∈ �1.

Obviously δ′ �= 0 by the assumption that δ is outer. Then there exists some arrow β ∈ Q1
such that δ′(β) �= 0, that is, δ′(β) = λβ for some λ �= 0. Let I be the left ideal of A

generated by the set

{α − et(α) | α ∈ �1, or α = β} ∪ {γ | γ �∈ �1, γ �= β}.
Consider the left A-module M = A/I . It is direct to show that M = ⊕

v∈Q0
kēv .

We claim that there exists no k-linear map f : M → M , such that for any a ∈ A and
m ∈ M , f (am) = af (m) + δ′(a)m. Otherwise, let f be such a map. Then for any v ∈ Q0,

f (ēv) = f (evēv) = evf (ēv) + δ′(ev)ēv = evf (ēv) = λvēv

for some λv ∈ k. Moreover, for any α ∈ �1, we have

f (ēt (α)) = f (ᾱ) = f (αēs(α)) = αf (ēs(α)) + δ′(α)ēs(α) = αf (ēs(α)),

it follows that λs(α) = λt(α).
By the maximality of a spanning forest, there exist arrows α1, · · · , αr ∈ �1, such that

the set {β, α1, · · · , αr } forms a cycle. Thus we have λs(β) = λt(β). On the other hand side,

λt(β)ēt (β) = f (ēt (β)) = f (β̄) = f (βēs(α)) = βf (ēs(β)) + δ′(β)ēs(β)) = (λs(β) + λ)ēt (β),

it forces that λ = 0, which leads to a contradiction.

Thus by Lemma 3.5 the sequence 0 → M

(
1
0

)

−−→ M ⊕δ′ M
(0,1)−−→ M → 0 is non-split,

again by Proposition 3.4, we have χ(δ̄) �= 0.
Now all possible cases have been exhausted and we are done.

We mention that our argument does not apply to an arbitrary hereditary algebra, the rea-
son is that in general case, we do not have a nice description of elements in the Hochschild
cohomology groups. However, if the field k is algebraically closed, then we get more. Note
that the Hochschild cohomology and the derived category are both invariant under derived
equivalence, and especially invariant under Morita equivalence. Combined with the fact
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that over an algebraically closed field, any finite dimensional hereditary algebra is Morita
equivalent to a path algebra of a finite acyclic quiver, we draw the following consequence.

Corollary 5.8 Let k be an algebraically closed field and A a finite dimensional hereditary
algebra. Then the characteristic morphism of A is injective.

5.4 A Further Example: the Polynomial Ring k[x]
Example 5.9 We end with an example of a finite quiver with oriented cycles. Consider the
quiver with exactly one vertex and one loop attached. The path algebra of this quiver is k[x],
the polynomial ring in one variable. We claim that in this case, the characteristic morphism
is also injective.

Clearly any nonzero derivation of k[x] is outer. It is well known that any derivation δ of
k[x] is uniquely determined by its value δ(x) at the monomial x, and δ is nonzero if and
only if δ(x) is nonzero. In fact, δ(f (x)) = f ′(x)δ(x) for any f (x) ∈ k[x], where f ′(x) is
the formal derivative of f (x), which is defined by

(anx
n + · · · + · · · a1x + a0)

′ = nanx
n−1 + · · · + 2a2x + a1.

Let δ be a nonzero derivation of k[x]. We first show that there exists some irreducible
polynomial h(x) ∈ k[x] with h′(x) �= 0 and δ(x) �∈ h(x)k[x]. If k is an infinite field,
then h(x) can be chosen to be of the form x + λ for some λ in k. Now assume that k is a
finite field. Let n be a positive integer which is strictly greater than the degree of δ(x) and
coprime to the characteristic of k. A well-known result on finite fields says that there exists
at least one irreducible polynomial h(x) ∈ k[x] of degree n. Clearly h′(x) has degree n − 1
and hence h′(x) �= 0. Moreover, we have δ(x) �∈ h(x)k[x] for the degree of δ(x) is strictly
less that the one of h(x).

Similarly by comparing the degrees of h(x) and h′(x) we know that h′(x) �∈ h(x)k[x].
Since h(x) is irreducible, h(x)k[x] is a maximal ideal and hence a prime ideal. It follows
that δ(h(x)) = h′(x)δ(x) �∈ h(x)k[x], and by the same argument as in the proof of Theorem
5.7, we obtain that χ(δ̄) �= 0.
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Sci. Éc. Norm. Supér. (4) 41(4), 573–619 (2008)

6. Bergh, P.A., Iyengar, S., Krause, H., Oppermann, S.: Dimensions of triangulated categories via Koszul
objects. Math. Z 265(4), 849–864 (2010)

7. Buchweitz, R.O., Flenner, H.: Hochschild (co-)homology of singular spaces. Adv. Math. 217(1), 205–
242 (2008)



990 B. Wang etal.

8. Buchweitz, R.O., Flenner, H.: The global decomposition theorem for Hochschild (co-)homology of
singular spaces via the Atiyah-Chern character. Adv. Math. 217(1), 243C281 (2008)

9. Buchweitz, R.O., Green, E.L., Madsen, D., Solberg, Ø.: Finite Hochschild cohomology without finite
global dimension. Math. Res. Lett. 12, 805–16 (2005)

10. Cartan, H., Eilenberg, S.: Homological algebra, Princeton Mathematical Series 19 Princeton University
Press (1956)

11. Cibils, C.: On the Hochschild cohomology of finite dimensional algebras. Comm. Algebra 16, 645–649
(1988)

12. Drozd, Y.A., Kirichenko, V.V.: Finite Dimensional Algebras. Springer-Verlag, New York (1994)
13. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78(2), 267–288 (1963)
14. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79(2), 59–103 (1964)
15. Guo, L., Li, F.: Structure of Hochschild cohomology of path algebras and differential formulation of

Euler’s polyhedron formula. Asian J. Math. 18(3), 545–572 (2014)
16. Han, Y.: Hochschild (co)homology dimension. J. Lond. Math. Soc. 73(2), 657–668 (2006)
17. Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras, LMS

Lecture Note Series 119, Cambridge University Press, Cambridge, 1988. x+208 pp. ISBN: 0-521-33922-
7

18. Happel, D.: Hochschild cohomology of finite-dimensional algebras Lect. Notes Math., vol. 1404,
pp. 108–126. Springer-Verlag, Berlin (1989)

19. Hochschild, G.: On the cohomology groups of an associative algebra. Ann. Math. 46, 58–67 (1945)
20. Jacobson, N.: Finite dimensional division algebras over fields Springer-Verlag (1996)
21. Keller, B.: Derived invariance of higher structures on the Hochschild complex Preprint. http://www.

math.jussieu.fr/keller/publ/dih.dvi (2003)
22. Krause, H.: Derived Categories, Resolutions, and Brown Representability. In: Interactions between

homotopy theory and algebra, 101C139, Contemp. Math. 436, Amer. Math. Soc., Providence, RI, (2007)
23. Krause, H., Ye, Y.: On the centre of a triangulated category. Proc. Edinb. Math. Soc 54(2), 443–466

(2011)
24. Künzer, M.: On the center of the derived category preprint (2006)
25. Linckelmann, M.: On graded centres and block cohomology. Proc. Edinb. Math. Soc 52(2), 489–514

(2009)
26. Linckelmann, M., Stancu, R.: On the graded center of the stable category of a finite pgroup. J. Pure Appl.

Algebra 214(6), 950–959 (2010)
27. Lowen, W.: Hochschild cohomology, The characteristic morphism and derived deformations. Compos.

Math. 144(6), 1557–1580 (2008)
28. Lowen, W., Van den Bergh, M.: Hochschild cohomology of abelian categories and ringed spaces. Adv.

Math. 198(1), 172–221 (2005)
29. Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc. 43(2), 37–48 (1991)
30. Ringel, C.M.: Tame algebras and integral quadratic forms Lect. Notes Math., vol. 1099. Springer-Verlag,

Berlin (1984)
31. Snashall, N., Solberg, Ø.: Support varieties and Hochschild cohomology rings. Proc. Lond. Math. Soc.

88, 705–32 (2004)
32. Verdier, J.L.: Des catégories dérivées des catégories abéliennes. Astérisque, 239 (1996)
33. Weibel, C.A.: An Introduction to Homological Algebra Cambridge Studies in Advanced Mathematics,

vol. 38. Cambridge University Press, Cambridge (1994)
34. Zhang, P.: Hochschild cohomology of a truncated basic cycle. Sci. in China (A) 40(12), 1272–1278

(1997)

http://www.math.jussieu.fr/keller/publ/dih.dvi
http://www.math.jussieu.fr/keller/publ/dih.dvi

	The Characteristic Morphism of An Algebra
	Abstract
	Introduction
	Question

	Preliminaries
	Hochschild Cohomology
	Graded Center of a Triangulated Category
	The Characteristic Morphism

	The Natural Transformation Induced by a Derivation
	Derivations and Bimodule Extensions
	Derivations Viewed as Morphisms in Derived Category
	The Image of a Derivation

	Derivations of a Path Algebra
	Quivers and Path Algebras
	Derivations of a Path Algebra
	A Basis of HH1(kQ) for a Finite Acyclic Quiver Q

	Characteristic Morphism of a Path Algebra
	We Begin with an Interesting Example in which the Characteristic Morphism is Neither Injective Nor Surjective
	The Characteristic Morphism of a Semi-Simple Algebra
	The Characteristic Morphism of a Path Algebra
	A Further Example: the Polynomial Ring k[x]

	Acknowledgments
	References


